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Abstract. Random Number Generators (RNGs) are essential in various applications, including

gaming, encryption, Monte Carlo simulations, sorting algorithms, and cryptocurrency. This article

explores the various methods which computers use in order to produce random numbers, including

pseudo-random number generation (PRNG) and true random number generation (TRNG). Due to

the fact that computers operate in an established manner, they rely mostly on pseudo-random

generation, a method in which an algorithmic process generates numbers, not truly random in the

case where the state of the algorithm is known. True random number generation, on the other hand,

utilizes unexpected physical events such as radioactive decay and atmospheric noise to generate

(truly) random numbers. This article covers the advantages and disadvantages of these systems , as

well as their real-world applications, concluding by highlighting situations in which a real RNG is

required, emphasizing its role in improving system security. We will build a model involving an

anode/cathode diode which acts as a basic TRNG.

Keywords: pseudo-random number generator (PRNG) · true random number generator (TRNG) ·

algorithm · unpredictable/predictable
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1. Introduction

Random numbers are an essential part of everyday life, playing essential roles in fields such

as probability theory, industrial testing, gambling, and computer simulations. Despite their

ubiquity, generating truly random numbers is a challenging task, especially when using

Pseudo-Random Number Generation (PRNG) approaches.

In the PRNG method, a system initializes a seed value which is processed through a series of

mathematical functions and algorithms into a number within a set start and end range. However,

this method is flawed, and in the following sections of this paper, we will look into the ways in which

this system can be broken and exploited.

Unlike PRNG, True Random Number Generation (TRNG) methods adopt a different model.

TRNG relies on an external source of randomness in order to establish the initial seed. This external

source, which can include physical phenomena, such as atmospheric noise or radioactive decay,

introduces an unpredictable element, enhancing the randomness of the generated numbers. Due to

this, the same seed cannot be generated multiple times, creating a secure generating system.

Furthermore, understanding the limitations of PRNG is crucial, including its practical

implications in various applications. For example, in the context of cryptographic systems, weakness

in randomness of generated numbers can lead to vulnerabilities and compromise the security of the

entire system.

In conclusion, as we move into the digital world with complex technologies, the need for

secure random number generation becomes more crucial, requiring the exploration of alternative

methods such as TRNG becomes essential.
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2. Pseudo-Random Number Generators

Pseudo-Random Number Generators (PRNGs) are widely used in the field of computer

science in order to generate sequences of numbers that demonstrate statistical properties of

randomness. Most random number generators, including PRNGs, rely on seeds, initial values

inputted into an algorithm that converts them into pseudo-random numbers through a series of

mathematical operations. An important point to note about PRNGs is that they are predeterministic;

when given the same seed, a PRNG will always return the same random number. We will discuss this

flaw later on in this section.

2.1 Linear Congruential

A code example for the Linear Congruential PRNG algorithm can be seen either in this

github or in the code snippet shown below.

import time

class PseudoRandom:

def generate_seed(self) -> int:

seed = int(time.time() * 1000)

return seed

def pseudo_random_generator(self, end_range) -> int:

seed = self.generate_seed()

random_number = ((seed * 6364136223846793005) % 2**64) % end_range

# Xnf = ((Xn * a ) % 2**64) % m

return random_number

random_num = PseudoRandom().pseudo_random_generator(end_range=100)

print("Random number:", random_num)

First, the current time is extracted using the time module. This code then converts the time,

for example, 1699926184.773952, into a larger seed by multiplying it by , resulting in a value1000

https://github.com/omkarxpatel/Random-Number-Generation-RNG-/blob/main/linear_congruential.py
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such as 1699926184773.952. Using a linear congruential generator formula, a pseudo-random

number is generated:

𝑋
𝑛𝑓

= ((𝑋
𝑛

* 𝑎) % 264) % 𝑚

(Linear Congruential)

The number Xn, in this case the operating systems , is first converted into a seed𝑡𝑖𝑚𝑒. 𝑡𝑖𝑚𝑒()

by multiplying it by a constant . We take the result modulo to ensure it's within a 64-bit range𝑎 264

and then take the result modulo to get a number between 1 and .𝑒𝑛𝑑_𝑟𝑎𝑛𝑔𝑒 𝑒𝑛𝑑_𝑟𝑎𝑛𝑔𝑒

2.2 Mersenne Twister

Another commonly used formula for number generation when given a seed is the Mersenne

Twister Equation as seen below,

𝑋
𝑛+1

= 𝑋
𝑛
⊕ ((𝑋

𝑛
 ≫ 𝑤) ⊕ 0𝑥9908𝐵0𝐷𝐹)

(Mersenne Twister)

Where Xn is the current state, w is the word size (typically 32 bits for MT19937),≫ signifies

a right bitwise shift, and XOR denotes bitwise XOR. The equation involves two bitwise XOR

operations and a right shift, contributing to the unpredictability of the generated numbers. The

constant 0x9908B0DF serves as a parameter ensuring a sufficiently intricate update process.

Through this iterative application of the equation, the Mersenne Twister achieves a balance

between computational efficiency and statistical quality, making it a favored choice for various

applications that require pseudorandom numbers.

A code example for the Mersenne Twister PRNG algorithm can be seen either in this github

or in the code snippet shown below.

https://github.com/omkarxpatel/Random-Number-Generation-RNG-/blob/main/mersenne_twister.py
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import time

class MersenneTwister:

def __init__(self):

self.state, self.index = [0] * 624, 0

self.seed_mt(self.generate_seed())

def generate_seed(self):

temp, seed = int(str(time.time())[-1]), int(time.time() * 1000)

seed *= temp if temp % 2 == 0 else 1 / temp

return seed % 2**32

def seed_mt(self, seed):

self.state[0] = seed & 0xFFFFFFFF

for i in range(1, 624):

self.state[i] = (1812433253*(self.state[i-1]^(self.state[i-1]>>30))+i)

Self.state[i] &= 0xFFFFFFFF

def generate_mt(self):

for i in range(624):

y = (self.state[i] & 0x80000000) + (self.state[(i + 1) % 624] & 0x7FFFFFFF)

self.state[i] = self.state[(i+397)%624]^(y>>1)^(0x9908B0DF if y%2!=0 else 0)

def extract_random(self, end_range):

if self.index == 0: self.generate_mt()

y = self.state[self.index]

y ^= (y >> 11) ^ ((y << 7) & 0x9D2C5680) ^ ((y << 15) & 0xEFC60000) ^ (y >> 18)

self.index = (self.index + 1) % 624

return y % end_range

def main(self):

self.seed_mt(self.generate_seed())

print("Seed:", self.state[0])

print("Random Number:", self.extract_random(100))

# Create an instance of MersenneTwister and run the main function

MersenneTwister().main()

The code shown above defines a custom random number generator using the Mersenne

Twister algorithm. The MersenneTwister class includes functions to generate a seed based on the

current time, seed the Mersenne Twister, generate random numbers, and extract random numbers.
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The generate_seed function retrieves the current time, multiplies it by 1000, and returns the

resulting value as the seed. The Mersenne Twister is seeded using the seed_mt function, and random

numbers are generated using the generate_mt function. The extract_random function extracts a

random number from the Mersenne Twister state. Themain function initiates the process, seeds the

Mersenne Twister with the generated seed, extracts a random number, and prints both the seed and

the generated random number.

2.3 Flaws of PRNGs

The use of seeds in Pseudo-Random Number Generators (PRNGs) brings up an important

constraint - determinism. If a PRNG is called with the same seed, it will always produce the same

number due to the fact that a PRNG utilizes a set algorithm. This predictability is a major security

problem, particularly in cryptographic systems where real randomness is required. For example, the

linear congruential formula shown in the code snippet produces the same result when run on

multiple instances at approximately the same time.

Recognizing this weakness makes it clear that more entropy sources are required to

improve the unpredictability of PRNGs. While using system time as a seed is convenient, it falls

short in cases requiring a higher level of randomization and security. As a result, this weakness

requires a detailed assessment of the issues posed by PRNGs, as well as an investigation of the

benefits provided by true random number generators (TRNGs) in improving these limits, which we

shall accomplish in the following sections.

3. True Number Generators

True Random Number Generators (TRNGs), on the other hand, generate random numbers in

a different manner than the pseudo-random generators. While PRNGs use deterministic algorithms
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and seeds to generate purportedly random numbers, TRNGs use physical processes in order to

obtain (true) randomness.

The randomness in a TRNG is generated by the inherent diversity in the physical processes

involved, which eliminates the need for a seed or deterministic algorithm. This crucial distinction is

that each TRNG output is independent of any previous state, making it nearly impossible to recreate

the exact sequence of numbers created by a TRNG.

While PRNGs have uses when repeatability and efficiency are critical, TRNGs are particularly

useful in situations requiring the highest level of unpredictability and security. As we go deeper into

the area of True Random Number Generators, we will investigate the principles underlying their

reliance on natural randomness, as well as its benefits and particular problems.

3.1 Entropy

The entropy of a random variable is the average level of information, surprise, or uncertainty

inherent to the variable's possible outcomes. Given a discrete random variable X, which takes the

values in the alphabet X and is distributed according to 𝑋 →  [0, 1]:

𝐻(𝑋) : =  −
𝑥∈𝑋
∑ 𝑝(𝑥) 𝑙𝑜𝑔 · 𝑝(𝑥) = ∃[− 𝑙𝑜𝑔𝑝(𝑋)]

(Information Theory)

Where Σ denotes the sum over the variables possible values. The choice of base for log, the

logarithm, varies for different applications. Base 2 gives the units of bits (or “shannons”), while the

base e gives “natural units” nat, and base 10 gives units of “dits”, “bans”, or “hartleys”. An equivalent

definition of entropy is the expected value of the self-information of a variable.

Another example of an entropy calculation that can be used in RNGs is the Shannon Entropy

formula, If we choose ( in this case ) numbers uniformly from , we can calculate the𝑛 𝑛 = 4  [1, 𝑧]

entropy. Recall the definition of (Shannon) entropy:
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𝐻(𝑋) =
𝑖=1

𝑛

∑ 𝑃(𝑥
𝑖
) 𝑙𝑜𝑔

𝑏
 𝑃(𝑥

𝑖
)

(Shannon Entropy)

Here is the state (e.g. (1, 2, 3, 4)). In the case , the values are the possible states, e.g.𝑋 𝑧 = 10 𝑥
𝑖

. is the probability that the random number .{(1, 1, 1, 1), (1, 1, 1, 2), …, (10, 10, 10, 10)} 𝑃(𝑥
𝑖
) 𝑋 = 𝑥

𝑖

When the probability distribution is uniform, then the probabilities are all equal to . Notice that1/𝑛

this is a calculation not over the state itself, but over the probability distribution of all the possible

states. In other words: The entropy is determined not on what the numbers are, but how they are

chosen.

3.2 Diode Model

For this paper, we will be making a basic TRNG model using a diode. This type of TRNG takes

advantage of the inherent unpredictability of electrical noise in the reverse-biased breakdown

region of the diode.

The diode with its anode and cathode terminals is operated in reverse bias in this setup,

entering a breakdown area where electronic noise occurs owing to random motion of charge

carriers and thermal factors. An amplifier then amplifies the slight voltage fluctuations caused by

the electrical noise. A comparator compares the amplified signal to a reference value, generating a

binary output that reflects the stochastic changes in the diode's breakdown region. The resulting

output is real randomness, and each generated sequence is inherently unique due to the physical
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nature of the diode's activity. This hardware-based TRNG eliminates the need for a seed and

provides a reliable solution for applications that require high degrees of unpredictability and

cryptographic security.

4. Conclusion

Random Number Generators (RNGs) are essential in a wide range of applications, from

gaming and encryption to simulation and cryptography. This article discussed the two main

methods for generating random numbers: pseudo-random number generation (PRNG) and true

random number generation (TRNG). TRNGs use physical processes to achieve real randomness,

whereas PRNGs use deterministic algorithms and seeds.

Because of their repeatability and efficiency, pseudo-random number generators, such as

Linear Congruential and Mersenne Twister, are commonly utilized. Their determinism, however,

raises security concerns, particularly in cryptographic systems where true randomness is required.

The shortcomings of PRNGs underscore the need for more unpredictable and secure techniques.

True Random Number Generators satisfy this need by harnessing physical processes'

intrinsic unpredictability. To comprehend the unpredictability of TRNGs, the idea of entropy, which

quantifies the quantity of information and uncertainty in a random variable, is investigated. The

study presents a rudimentary TRNG model based on a diode, demonstrating the use of electrical

noise in the reverse-biased breakdown area to generate real randomness. This hardware-based

TRNG, which is free of deterministic algorithms and seeds, provides a dependable solution for

applications that require maximum unpredictability and cryptographic security.

As technology progresses and the digital landscape changes, the need for safe random

number generation is more pressing. Recognizing the limits of PRNGs and investigating alternatives,

such as TRNGs, are critical steps in improving system security. The described diode-based TRNG

model shows the possibility of using physical processes to generate really random numbers. Finally,
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a thorough grasp of RNGs, their strengths and shortcomings, and real-world applications is critical

for assuring the integrity and security of digital systems.

5. Works Cited

Chapter 3 Pseudo-Random Numbers Generators 3.1 Basics of Pseudo-Random Numbers Generators.

Jacak, Marcin M., et al. “Quantum Generators of Random Numbers.” Scientific Reports, vol. 11, no. 1, 9

Aug. 2021, https://doi.org/10.1038/s41598-021-95388-7. Accessed 15 Sept. 2021.

“Polarity - Learn.sparkfun.com.” Learn.sparkfun.com,

learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity.

Priyanka, et al. “Random Number Generators and Their Applications: A Review.” ResearchGate,

unknown, June 2019,

www.researchgate.net/publication/335920952_Random_Number_Generators_and_their_Ap

plications_A_Review.

“Pseudo Random Number Generator (PRNG) - GeeksforGeeks.” GeeksforGeeks, 27 June 2017,

www.geeksforgeeks.org/pseudo-random-number-generator-prng/.

“Pseudorandom Number Generator.” Wikipedia, 22 Sept. 2021,

en.wikipedia.org/wiki/Pseudorandom_number_generator.

Stipčević, Mario. “(PDF) True Random Number Generators.” ResearchGate, 1 Nov. 2014,

www.researchgate.net/publication/299824248_True_Random_Number_Generators.

Wikipedia Contributors. “Random Number Generation.” Wikipedia, Wikimedia Foundation, 17 July

2019, en.wikipedia.org/wiki/Random_number_generation.


